
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft
Intended status: Informational H. Andrews, Ed.
Expires: May 23, 2018 Cloudflare, Inc.
 G. Luff
 November 19, 2017

JSON Schema Validation: A Vocabulary for Structural Validation of JSON
draft-handrews-json-schema-validation-00

Abstract

 JSON Schema (application/schema+json) has several purposes, one of
 which is JSON instance validation. This document specifies a
 vocabulary for JSON Schema to describe the meaning of JSON documents,
 provide hints for user interfaces working with JSON data, and to make
 assertions about what a valid document must look like.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <http://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 23, 2018.

Wright, et al. Expires May 23, 2018 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
http://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema Validation November 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
3. Overview . 4
3.1. Applicability . 5
3.1.1. Keyword Independence 5

3.2. Assertions . 5
3.2.1. Assertions and Instance Primitive Types 6

3.3. Annotations . 6
3.3.1. Negated Schemas 7
3.3.2. Annotations and Short-Circuit Validation 7

4. Interoperability Considerations 7
4.1. Validation of String Instances 7
4.2. Validation of Numeric Instances 7
4.3. Regular Expressions 7

5. Meta-Schema . 8
6. Validation Keywords . 8
6.1. Validation Keywords for Any Instance Type 8
6.1.1. type . 8
6.1.2. enum . 9
6.1.3. const . 9

 6.2. Validation Keywords for Numeric Instances (number and
 integer) . 9

6.2.1. multipleOf . 9
6.2.2. maximum . 9
6.2.3. exclusiveMaximum 9
6.2.4. minimum . 9
6.2.5. exclusiveMinimum 10

6.3. Validation Keywords for Strings 10
6.3.1. maxLength . 10
6.3.2. minLength . 10
6.3.3. pattern . 10

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Wright, et al. Expires May 23, 2018 [Page 2]

Internet-Draft JSON Schema Validation November 2017

6.4. Validation Keywords for Arrays 11
6.4.1. items . 11
6.4.2. additionalItems 11
6.4.3. maxItems . 11
6.4.4. minItems . 11
6.4.5. uniqueItems . 12
6.4.6. contains . 12

6.5. Validation Keywords for Objects 12
6.5.1. maxProperties . 12
6.5.2. minProperties . 12
6.5.3. required . 12
6.5.4. properties . 13
6.5.5. patternProperties 13
6.5.6. additionalProperties 13
6.5.7. dependencies . 14
6.5.8. propertyNames . 14

6.6. Keywords for Applying Subschemas Conditionally 15
6.6.1. if . 15
6.6.2. then . 15
6.6.3. else . 15

6.7. Keywords for Applying Subschemas With Boolean Logic . . . 16
6.7.1. allOf . 16
6.7.2. anyOf . 16
6.7.3. oneOf . 16
6.7.4. not . 16

7. Semantic Validation With "format" 16
7.1. Foreword . 16
7.2. Implementation Requirements 17
7.3. Defined Formats . 17
7.3.1. Dates and Times 17
7.3.2. Email Addresses 18
7.3.3. Hostnames . 18
7.3.4. IP Addresses . 19
7.3.5. Resource Identifiers 19
7.3.6. uri-template . 19
7.3.7. JSON Pointers . 19
7.3.8. regex . 20

8. String-Encoding Non-JSON Data 20
8.1. Foreword . 20
8.2. Implementation Requirements 20
8.3. contentEncoding . 21
8.4. contentMediaType . 21
8.5. Example . 21

9. Schema Re-Use With "definitions" 22
10. Schema Annotations . 22
10.1. "title" and "description" 23
10.2. "default" . 23
10.3. "readOnly" and "writeOnly" 23

Wright, et al. Expires May 23, 2018 [Page 3]

Internet-Draft JSON Schema Validation November 2017

10.4. "examples" . 24
11. Security Considerations 24
12. References . 25
12.1. Normative References 25
12.2. Informative References 27

Appendix A. Acknowledgments 28
Appendix B. ChangeLog . 28

 Authors' Addresses . 30

1. Introduction

 JSON Schema can be used to require that a given JSON document (an
 instance) satisfies a certain number of criteria. These criteria are
 asserted by using keywords described in this specification. In
 addition, a set of keywords is also defined to assist in interactive
 user interface instance generation.

 This specification will use the concepts, syntax, and terminology
 defined by the JSON Schema core [json-schema] specification.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification uses the term "container instance" to refer to
 both array and object instances. It uses the term "children
 instances" to refer to array elements or object member values.

 Elements in an array value are said to be unique if no two elements
 of this array are equal [json-schema].

3. Overview

 JSON Schema validation applies schemas to locations within the
 instance, and asserts constraints on the structure of the data at
 each location. An instance location that satisfies all asserted
 constraints is then annotated with any keywords that contain non-
 assertion information, such as descriptive metadata and usage hints.
 If all locations within the instance satisfy all asserted
 constraints, then the instance is said to be valid against the
 schema.

 Each schema object is independently evaluated against each instance
 location to which it applies. This greatly simplifies the
 implementation requirements for validators by ensuring that they do

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wright, et al. Expires May 23, 2018 [Page 4]

Internet-Draft JSON Schema Validation November 2017

 not need to maintain state across the document-wide validation
 process.

3.1. Applicability

 Validation begins by applying the root schema to the complete
 instance document. From there, various keywords are used to
 determine which additional subschemas are applied to either the
 current location, or a child location. These keywords also define
 whether and how subschema assertion results are modified and/or
 combined. Such keywords do not assert conditions on their own.
 Rather, they control how assertions are applied and evaluated.

 The keywords in the boolean logic (Section 6.7) and conditional
 (Section 6.6) sections of this specification apply subschemas to the
 same location as the parent schema. The former group defines boolean
 operations on the subschema assertion results, while the latter
 evaluates one subschema and uses its assertion results to determine
 which of two other subschemas to apply as well.

 Several keywords determine which subschemas are applied to array
 items, object property values, and object property names. They are:
 "items", "additionalItems", "contains", "properties",
 "patternProperties", "additionalProperties", and "propertyNames".
 The "contains" keyword only requires its subschema to be valid
 against at least one child instance, while the other keywords require
 that all subschemas are valid against all child instances to which
 they apply.

3.1.1. Keyword Independence

 Validation keywords typically operate independently, without
 affecting each other's outcomes.

 For schema author convenience, there are some exceptions among the
 keywords that control subschema applicability:

 "additionalProperties", whose behavior is defined in terms of
 "properties" and "patternProperties"; and

 "additionalItems", whose behavior is defined in terms of "items".

3.2. Assertions

 Validation is a process of checking assertions. Each assertion adds
 constraints that an instance must satisfy in order to successfully
 validate.

Wright, et al. Expires May 23, 2018 [Page 5]

Internet-Draft JSON Schema Validation November 2017

 Assertion keywords that are absent never restrict validation. In
 some cases, this no-op behavior is identical to a keyword that exists
 with certain values, and these values are noted where known.

 All of the keywords in the general (Section 6.1), numeric
 (Section 6.2), and string (Section 6.3) sections are assertions, as
 well as "minItems", "maxItems", "uniqueItems", "minProperties",
 "maxProperties", and "required". Additionally, "dependencies" is
 shorthand for a combination of conditional and assertion keywords.

 The "format", "contentType", and "contentEncoding" keywords can also
 be implemented as assertions, although that functionality is an
 optional part of this specification, and the keywords convey
 additional non-assertion information.

3.2.1. Assertions and Instance Primitive Types

 Most validation assertions only constrain values within a certain
 primitive type. When the type of the instance is not of the type
 targeted by the keyword, the instance is considered to conform to the
 assertion.

 For example, the "maxLength" keyword will only restrict certain
 strings (that are too long) from being valid. If the instance is a
 number, boolean, null, array, or object, then it is valid against
 this assertion.

3.3. Annotations

 In addition to assertions, this specification provides a small
 vocabulary of metadata keywords that can be used to annotate the JSON
 instance with useful information. The Section 7 and Section 8
 keywords are also useful as annotations as well as being optional
 assertions, as they convey additional usage guidance for the instance
 data.

 A schema that is applicable to a particular location in the instance,
 against which the instance location is valid, attaches its
 annotations to that location in the instance. Since many subschemas
 can be applicable to any single location, annotation keywords need to
 specify any unusual handling of multiple applicable occurrences of
 the keyword with different values. The default behavior is simply to
 collect all values.

 Additional vocabularies SHOULD make use of this mechanism for
 applying their own annotations to instances.

Wright, et al. Expires May 23, 2018 [Page 6]

Internet-Draft JSON Schema Validation November 2017

3.3.1. Negated Schemas

 Annotations in a subschema contained within a "not", at any depth,
 including any number of intervening additional "not" subschemas, MUST
 be ignored. Similarly, annotations within a failing branch of a
 "oneOf", "anyOf", "then", or "else" MUST be ignored.

3.3.2. Annotations and Short-Circuit Validation

 Annotation keywords MUST be applied to all possible sub-instances.
 Even if such application can be short-circuited when only assertion
 evaluation is needed. For instance, the "contains" keyword need only
 be checked for assertions until at least one array item proves valid.
 However, when working with annotations, all items in the array must
 be evaluated to determine all items with which the annotations should
 be associated.

4. Interoperability Considerations

4.1. Validation of String Instances

 It should be noted that the nul character (\u0000) is valid in a JSON
 string. An instance to validate may contain a string value with this
 character, regardless of the ability of the underlying programming
 language to deal with such data.

4.2. Validation of Numeric Instances

 The JSON specification allows numbers with arbitrary precision, and
 JSON Schema does not add any such bounds. This means that numeric
 instances processed by JSON Schema can be arbitrarily large and/or
 have an arbitrarily long decimal part, regardless of the ability of
 the underlying programming language to deal with such data.

4.3. Regular Expressions

 Two validation keywords, "pattern" and "patternProperties", use
 regular expressions to express constraints, and the "regex" value for
 the "format" keyword constrains the instance value to be a regular
 expression. These regular expressions SHOULD be valid according to
 the ECMA 262 [ecma262] regular expression dialect.

 Furthermore, given the high disparity in regular expression
 constructs support, schema authors SHOULD limit themselves to the
 following regular expression tokens:

 individual Unicode characters, as defined by the JSON
 specification [RFC7159];

https://datatracker.ietf.org/doc/html/rfc7159

Wright, et al. Expires May 23, 2018 [Page 7]

Internet-Draft JSON Schema Validation November 2017

 simple character classes ([abc]), range character classes ([a-z]);

 complemented character classes ([^abc], [^a-z]);

 simple quantifiers: "+" (one or more), "*" (zero or more), "?"
 (zero or one), and their lazy versions ("+?", "*?", "??");

 range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at
 least x, at most y, occurrences), {x,} (x occurrences or more),
 and their lazy versions;

 the beginning-of-input ("^") and end-of-input ("$") anchors;

 simple grouping ("(...)") and alternation ("|").

 Finally, implementations MUST NOT take regular expressions to be
 anchored, neither at the beginning nor at the end. This means, for
 instance, the pattern "es" matches "expression".

5. Meta-Schema

 The current URI for the JSON Schema Validation is <http://json-
schema.org/draft-07/schema#>.

6. Validation Keywords

 Validation keywords in a schema impose requirements for successful
 validation of an instance.

6.1. Validation Keywords for Any Instance Type

6.1.1. type

 The value of this keyword MUST be either a string or an array. If it
 is an array, elements of the array MUST be strings and MUST be
 unique.

 String values MUST be one of the six primitive types ("null",
 "boolean", "object", "array", "number", or "string"), or "integer"
 which matches any number with a zero fractional part.

 An instance validates if and only if the instance is in any of the
 sets listed for this keyword.

http://json-schema.org/draft-07/schema#
http://json-schema.org/draft-07/schema#

Wright, et al. Expires May 23, 2018 [Page 8]

Internet-Draft JSON Schema Validation November 2017

6.1.2. enum

 The value of this keyword MUST be an array. This array SHOULD have
 at least one element. Elements in the array SHOULD be unique.

 An instance validates successfully against this keyword if its value
 is equal to one of the elements in this keyword's array value.

 Elements in the array might be of any value, including null.

6.1.3. const

 The value of this keyword MAY be of any type, including null.

 An instance validates successfully against this keyword if its value
 is equal to the value of the keyword.

6.2. Validation Keywords for Numeric Instances (number and integer)

6.2.1. multipleOf

 The value of "multipleOf" MUST be a number, strictly greater than 0.

 A numeric instance is valid only if division by this keyword's value
 results in an integer.

6.2.2. maximum

 The value of "maximum" MUST be a number, representing an inclusive
 upper limit for a numeric instance.

 If the instance is a number, then this keyword validates only if the
 instance is less than or exactly equal to "maximum".

6.2.3. exclusiveMaximum

 The value of "exclusiveMaximum" MUST be number, representing an
 exclusive upper limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly less than (not equal to) "exclusiveMaximum".

6.2.4. minimum

 The value of "minimum" MUST be a number, representing an inclusive
 lower limit for a numeric instance.

Wright, et al. Expires May 23, 2018 [Page 9]

Internet-Draft JSON Schema Validation November 2017

 If the instance is a number, then this keyword validates only if the
 instance is greater than or exactly equal to "minimum".

6.2.5. exclusiveMinimum

 The value of "exclusiveMinimum" MUST be number, representing an
 exclusive lower limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly greater than (not equal to) "exclusiveMinimum".

6.3. Validation Keywords for Strings

6.3.1. maxLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is less
 than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

6.3.2. minLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is
 greater than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

 Omitting this keyword has the same behavior as a value of 0.

6.3.3. pattern

 The value of this keyword MUST be a string. This string SHOULD be a
 valid regular expression, according to the ECMA 262 regular
 expression dialect.

 A string instance is considered valid if the regular expression
 matches the instance successfully. Recall: regular expressions are
 not implicitly anchored.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Wright, et al. Expires May 23, 2018 [Page 10]

Internet-Draft JSON Schema Validation November 2017

6.4. Validation Keywords for Arrays

6.4.1. items

 The value of "items" MUST be either a valid JSON Schema or an array
 of valid JSON Schemas.

 This keyword determines how child instances validate for arrays, and
 does not directly validate the immediate instance itself.

 If "items" is a schema, validation succeeds if all elements in the
 array successfully validate against that schema.

 If "items" is an array of schemas, validation succeeds if each
 element of the instance validates against the schema at the same
 position, if any.

 Omitting this keyword has the same behavior as an empty schema.

6.4.2. additionalItems

 The value of "additionalItems" MUST be a valid JSON Schema.

 This keyword determines how child instances validate for arrays, and
 does not directly validate the immediate instance itself.

 If "items" is an array of schemas, validation succeeds if every
 instance element at a position greater than the size of "items"
 validates against "additionalItems".

 Otherwise, "additionalItems" MUST be ignored, as the "items" schema
 (possibly the default value of an empty schema) is applied to all
 elements.

 Omitting this keyword has the same behavior as an empty schema.

6.4.3. maxItems

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "maxItems" if its size is less
 than, or equal to, the value of this keyword.

6.4.4. minItems

 The value of this keyword MUST be a non-negative integer.

Wright, et al. Expires May 23, 2018 [Page 11]

Internet-Draft JSON Schema Validation November 2017

 An array instance is valid against "minItems" if its size is greater
 than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

6.4.5. uniqueItems

 The value of this keyword MUST be a boolean.

 If this keyword has boolean value false, the instance validates
 successfully. If it has boolean value true, the instance validates
 successfully if all of its elements are unique.

 Omitting this keyword has the same behavior as a value of false.

6.4.6. contains

 The value of this keyword MUST be a valid JSON Schema.

 An array instance is valid against "contains" if at least one of its
 elements is valid against the given schema.

6.5. Validation Keywords for Objects

6.5.1. maxProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "maxProperties" if its number of
 properties is less than, or equal to, the value of this keyword.

6.5.2. minProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "minProperties" if its number of
 properties is greater than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

6.5.3. required

 The value of this keyword MUST be an array. Elements of this array,
 if any, MUST be strings, and MUST be unique.

 An object instance is valid against this keyword if every item in the
 array is the name of a property in the instance.

Wright, et al. Expires May 23, 2018 [Page 12]

Internet-Draft JSON Schema Validation November 2017

 Omitting this keyword has the same behavior as an empty array.

6.5.4. properties

 The value of "properties" MUST be an object. Each value of this
 object MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself.

 Validation succeeds if, for each name that appears in both the
 instance and as a name within this keyword's value, the child
 instance for that name successfully validates against the
 corresponding schema.

 Omitting this keyword has the same behavior as an empty object.

6.5.5. patternProperties

 The value of "patternProperties" MUST be an object. Each property
 name of this object SHOULD be a valid regular expression, according
 to the ECMA 262 regular expression dialect. Each property value of
 this object MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself. Validation
 of the primitive instance type against this keyword always succeeds.

 Validation succeeds if, for each instance name that matches any
 regular expressions that appear as a property name in this keyword's
 value, the child instance for that name successfully validates
 against each schema that corresponds to a matching regular
 expression.

 Omitting this keyword has the same behavior as an empty object.

6.5.6. additionalProperties

 The value of "additionalProperties" MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself.

 Validation with "additionalProperties" applies only to the child
 values of instance names that do not match any names in "properties",
 and do not match any regular expression in "patternProperties".

Wright, et al. Expires May 23, 2018 [Page 13]

Internet-Draft JSON Schema Validation November 2017

 For all such properties, validation succeeds if the child instance
 validates against the "additionalProperties" schema.

 Omitting this keyword has the same behavior as an empty schema.

6.5.7. dependencies

 [[CREF1: Now that "if", "then", and "else" are keywords, it is not
 clear whether there is any benefit in keeping the schema form of
 "dependencies". It is frequently misunderstood, and having a form
 that takes a subschema as well as a form that takes a primitive value
 is particularly confusing. And it seems to be rarely used.
 Depending on feedback with "if", "then", and "else", the schema form
 of this keyword may well be removed in a future draft. Current
 thought is that the string form (giving property names in an array)
 is a useful shortcut.]]

 This keyword specifies rules that are evaluated if the instance is an
 object and contains a certain property.

 This keyword's value MUST be an object. Each property specifies a
 dependency. Each dependency value MUST be an array or a valid JSON
 Schema.

 If the dependency value is a subschema, and the dependency key is a
 property in the instance, the entire instance must validate against
 the dependency value.

 If the dependency value is an array, each element in the array, if
 any, MUST be a string, and MUST be unique. If the dependency key is
 a property in the instance, each of the items in the dependency value
 must be a property that exists in the instance.

 Omitting this keyword has the same behavior as an empty object.

6.5.8. propertyNames

 The value of "propertyNames" MUST be a valid JSON Schema.

 If the instance is an object, this keyword validates if every
 property name in the instance validates against the provided schema.
 Note the property name that the schema is testing will always be a
 string.

 Omitting this keyword has the same behavior as an empty schema.

Wright, et al. Expires May 23, 2018 [Page 14]

Internet-Draft JSON Schema Validation November 2017

6.6. Keywords for Applying Subschemas Conditionally

 These keywords work together to implement conditional application of
 a subschema based on the outcome of another subschema.

 These keywords MUST NOT interact with each other across subschema
 boundaries. In other words, an "if" in one branch of an "allOf" MUST
 NOT have an impact on a "then" or "else" in another branch.

6.6.1. if

 This keyword's value MUST be a valid JSON Schema.

 Instances that successfully validate against this keyword's subschema
 MUST also be valid against the subschema value of the "then" keyword,
 if present.

 Instances that fail to validate against this keyword's subschema MUST
 also be valid against the subschema value of the "else" keyword.

 Validation of the instance against this keyword on its own always
 succeeds, regardless of the validation outcome of against its
 subschema.

6.6.2. then

 This keyword's value MUST be a valid JSON Schema.

 When present alongside of "if", the instance successfully validates
 against this keyword if it validates against both the "if"'s
 subschema and this keyword's subschema.

 When "if" is absent, or the instance fails to validate against its
 subschema, validation against this keyword always succeeds.
 Implementations SHOULD avoid attempting to validate against the
 subschema in these cases.

6.6.3. else

 This keyword's value MUST be a valid JSON Schema.

 When present alongside of "if", the instance successfully validates
 against this keyword if it fails to validate against the "if"'s
 subschema, and successfully validates against this keyword's
 subschema.

 When "if" is absent, or the instance successfully validates against
 its subschema, validation against this keyword always succeeds.

Wright, et al. Expires May 23, 2018 [Page 15]

Internet-Draft JSON Schema Validation November 2017

 Implementations SHOULD avoid attempting to validate against the
 subschema in these cases.

6.7. Keywords for Applying Subschemas With Boolean Logic

6.7.1. allOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against all schemas defined by this keyword's
 value.

6.7.2. anyOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against at least one schema defined by this
 keyword's value.

6.7.3. oneOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against exactly one schema defined by this
 keyword's value.

6.7.4. not

 This keyword's value MUST be a valid JSON Schema.

 An instance is valid against this keyword if it fails to validate
 successfully against the schema defined by this keyword.

7. Semantic Validation With "format"

7.1. Foreword

 Structural validation alone may be insufficient to validate that an
 instance meets all the requirements of an application. The "format"
 keyword is defined to allow interoperable semantic validation for a
 fixed subset of values which are accurately described by

Wright, et al. Expires May 23, 2018 [Page 16]

Internet-Draft JSON Schema Validation November 2017

 authoritative resources, be they RFCs or other external
 specifications.

 The value of this keyword is called a format attribute. It MUST be a
 string. A format attribute can generally only validate a given set
 of instance types. If the type of the instance to validate is not in
 this set, validation for this format attribute and instance SHOULD
 succeed.

7.2. Implementation Requirements

 The "format" keyword functions as both an annotation (Section 3.3)
 and as an assertion (Section 3.2). While no special effort is
 required to implement it as an annotation conveying semantic meaning,
 implementing validation is non-trivial.

 Implementations MAY support the "format" keyword as a validation
 assertion. Should they choose to do so:

 they SHOULD implement validation for attributes defined below;

 they SHOULD offer an option to disable validation for this
 keyword.

 Implementations MAY add custom format attributes. Save for agreement
 between parties, schema authors SHALL NOT expect a peer
 implementation to support this keyword and/or custom format
 attributes.

7.3. Defined Formats

7.3.1. Dates and Times

 These attributes apply to string instances.

 Date and time format names are derived from RFC 3339, section 5.6
 [RFC3339].

 Implementations supporting formats SHOULD implement support for the
 following attributes:

 date-time A string instance is valid against this attribute if it is
 a valid representation according to the "date-time" production.

 date A string instance is valid against this attribute if it is a
 valid representation according to the "full-date" production.

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339

Wright, et al. Expires May 23, 2018 [Page 17]

Internet-Draft JSON Schema Validation November 2017

 time A string instance is valid against this attribute if it is a
 valid representation according to the "full-time" production.

 Implementations MAY support additional attributes using the other
 production names defined in that section. If "full-date" or "full-
 time" are implemented, the corresponding short form ("date" or "time"
 respectively) MUST be implemented, and MUST behave identically.
 Implementations SHOULD NOT define extension attributes with any name
 matching an RFC 3339 production unless it validates according to the
 rules of that production. [[CREF2: There is not currently consensus
 on the need for supporting all RFC 3339 formats, so this approach of
 reserving the namespace will encourage experimentation without
 committing to the entire set. Either the format implementation
 requirements will become more flexible in general, or these will
 likely either be promoted to fully specified attributes or dropped.
]]

7.3.2. Email Addresses

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 Internet email address as follows:

 email As defined by RFC 5322, section 3.4.1 [RFC5322].

 idn-email As defined by RFC 6531 [RFC6531]

 Note that all strings valid against the "email" attribute are also
 valid against the "idn-email" attribute.

7.3.3. Hostnames

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 representation for an Internet hostname as follows:

 hostname As defined by RFC 1034, section 3.1 [RFC1034], including
 host names produced using the Punycode algorithm specified in RFC

5891, section 4.4 [RFC5891].

 idn-hostname As defined by either RFC 1034 as for hostname, or an
 internationalized hostname as defined by RFC 5890, section 2.3.2.3
 [RFC5890].

 Note that all strings valid against the "hostname" attribute are also
 valid against the "idn-hostname" attribute.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6531
https://datatracker.ietf.org/doc/html/rfc6531
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5891#section-4.4
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc5890#section-2.3.2.3
https://datatracker.ietf.org/doc/html/rfc5890

Wright, et al. Expires May 23, 2018 [Page 18]

Internet-Draft JSON Schema Validation November 2017

7.3.4. IP Addresses

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 representation of an IP address as follows:

 ipv4 An IPv4 address according to the "dotted-quad" ABNF syntax as
 defined in RFC 2673, section 3.2 [RFC2673].

 ipv6 An IPv6 address as defined in RFC 4291, section 2.2 [RFC4291].

7.3.5. Resource Identifiers

 These attributes apply to string instances.

 uri A string instance is valid against this attribute if it is a
 valid URI, according to [RFC3986].

 uri-reference A string instance is valid against this attribute if
 it is a valid URI Reference (either a URI or a relative-
 reference), according to [RFC3986].

 iri A string instance is valid against this attribute if it is a
 valid IRI, according to [RFC3987].

 iri-reference A string instance is valid against this attribute if
 it is a valid IRI Reference (either an IRI or a relative-
 reference), according to [RFC3987].

 Note that all valid URIs are valid IRIs, and all valid URI References
 are also valid IRI References.

7.3.6. uri-template

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI Template (of any level), according to [RFC6570].

 Note that URI Templates may be used for IRIs; there is no separate
 IRI Template specification.

7.3.7. JSON Pointers

 These attributes apply to string instances.

https://datatracker.ietf.org/doc/html/rfc2673#section-3.2
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc4291#section-2.2
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc6570

Wright, et al. Expires May 23, 2018 [Page 19]

Internet-Draft JSON Schema Validation November 2017

 json-pointer A string instance is valid against this attribute if it
 is a valid JSON string representation of a JSON Pointer, according
 to RFC 6901, section 5 [RFC6901].

 relative-json-pointer A string instance is valid against this
 attribute if it is a valid Relative JSON Pointer
 [relative-json-pointer].

 To allow for both absolute and relative JSON Pointers, use "anyOf" or
 "oneOf" to indicate support for either format.

7.3.8. regex

 This attribute applies to string instances.

 A regular expression, which SHOULD be valid according to the ECMA 262
 [ecma262] regular expression dialect.

 Implementations that validate formats MUST accept at least the subset
 of ECMA 262 defined in the Regular Expressions (Section 4.3) section
 of this specification, and SHOULD accept all valid ECMA 262
 expressions.

8. String-Encoding Non-JSON Data

8.1. Foreword

 Properties defined in this section indicate that an instance contains
 non-JSON data encoded in a JSON string. They describe the type of
 content and how it is encoded.

 These properties provide additional information required to interpret
 JSON data as rich multimedia documents.

8.2. Implementation Requirements

 The content keywords function as both annotations (Section 3.3) and
 as assertions (Section 3.2). While no special effort is required to
 implement them as annotations conveying how applications can
 interpret the data in the string, implementing validation of
 conformance to the media type and encoding is non-trivial.

 Implementations MAY support the "contentMediaType" and
 "contentEncoding" keywords as validation assertions. Should they
 choose to do so, they SHOULD offer an option to disable validation
 for these keywords.

https://datatracker.ietf.org/doc/html/rfc6901#section-5
https://datatracker.ietf.org/doc/html/rfc6901

Wright, et al. Expires May 23, 2018 [Page 20]

Internet-Draft JSON Schema Validation November 2017

8.3. contentEncoding

 If the instance value is a string, this property defines that the
 string SHOULD be interpreted as binary data and decoded using the
 encoding named by this property. RFC 2045, Sec 6.1 [RFC2045] lists
 the possible values for this property.

 The value of this property MUST be a string.

 The value of this property SHOULD be ignored if the instance
 described is not a string.

8.4. contentMediaType

 The value of this property must be a media type, as defined by RFC
2046 [RFC2046]. This property defines the media type of instances

 which this schema defines.

 The value of this property MUST be a string.

 The value of this property SHOULD be ignored if the instance
 described is not a string.

 If the "contentEncoding" property is not present, but the instance
 value is a string, then the value of this property SHOULD specify a
 text document type, and the character set SHOULD be the character set
 into which the JSON string value was decoded (for which the default
 is Unicode).

8.5. Example

 Here is an example schema, illustrating the use of "contentEncoding"
 and "contentMediaType":

 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/png"
 }

 Instances described by this schema should be strings, and their
 values should be interpretable as base64-encoded PNG images.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046

Wright, et al. Expires May 23, 2018 [Page 21]

Internet-Draft JSON Schema Validation November 2017

 Another example:

 {
 "type": "string",
 "contentMediaType": "text/html"
 }

 Instances described by this schema should be strings containing HTML,
 using whatever character set the JSON string was decoded into
 (default is Unicode).

9. Schema Re-Use With "definitions"

 The "definitions" keywords provides a standardized location for
 schema authors to inline re-usable JSON Schemas into a more general
 schema. The keyword does not directly affect the validation result.

 This keyword's value MUST be an object. Each member value of this
 object MUST be a valid JSON Schema.

 As an example, here is a schema describing an array of positive
 integers, where the positive integer constraint is a subschema in
 "definitions":

 {
 "type": "array",
 "items": { "$ref": "#/definitions/positiveInteger" },
 "definitions": {
 "positiveInteger": {
 "type": "integer",
 "exclusiveMinimum": 0
 }
 }
 }

10. Schema Annotations

 Schema validation is a useful mechanism for annotating instance data
 with additional information. The rules for determining when and how
 annotations are associated with an instance are outlined in this
 specification's overview.

 These general-purpose annotation keywords provide commonly used
 information for documentation and user interface display purposes.

Wright, et al. Expires May 23, 2018 [Page 22]

Internet-Draft JSON Schema Validation November 2017

 They are not intended to form a comprehensive set of features.
 Rather, additional vocabularies can be defined for more complex
 annotation-based applications.

10.1. "title" and "description"

 The value of both of these keywords MUST be a string.

 Both of these keywords can be used to decorate a user interface with
 information about the data produced by this user interface. A title
 will preferably be short, whereas a description will provide
 explanation about the purpose of the instance described by this
 schema.

10.2. "default"

 There are no restrictions placed on the value of this keyword. When
 multiple occurrences of this keyword are applicable to a single sub-
 instance, implementations SHOULD remove duplicates.

 This keyword can be used to supply a default JSON value associated
 with a particular schema. It is RECOMMENDED that a default value be
 valid against the associated schema.

10.3. "readOnly" and "writeOnly"

 The value of these keywords MUST be a boolean. When multiple
 occurrences of these keywords are applicable to a single sub-
 instance, the resulting value MUST be true if any occurrence
 specifies a true value, and MUST be false otherwise.

 If "readOnly" has a value of boolean true, it indicates that the
 value of the instance is managed exclusively by the owning authority,
 and attempts by an application to modify the value of this property
 are expected to be ignored or rejected by that owning authority.

 An instance document that is marked as "readOnly for the entire
 document MAY be ignored if sent to the owning authority, or MAY
 result in an error, at the authority's discretion.

 If "writeOnly" has a value of boolean true, it indicates that the
 value is never present when the instance is retrieved from the owning
 authority. It can be present when sent to the owning authority to
 update or create the document (or the resource it represents), but it
 will not be included in any updated or newly created version of the
 instance.

Wright, et al. Expires May 23, 2018 [Page 23]

Internet-Draft JSON Schema Validation November 2017

 An instance document that is marked as "writeOnly" for the entire
 document MAY be returned as a blank document of some sort, or MAY
 produce an error upon retrieval, or have the retrieval request
 ignored, at the authority's discretion.

 For example, "readOnly" would be used to mark a database-generated
 serial number as read-only, while "writeOnly" would be used to mark a
 password input field.

 These keywords can be used to assist in user interface instance
 generation. In particular, an application MAY choose to use a widget
 that hides input values as they are typed for write-only fields.

 Omitting these keywords has the same behavior as values of false.

10.4. "examples"

 The value of this keyword MUST be an array. There are no
 restrictions placed on the values within the array. When multiple
 occurrences of this keyword are applicable to a single sub-instance,
 implementations MUST provide a flat array of all values rather than
 an array of arrays.

 This keyword can be used to provide sample JSON values associated
 with a particular schema, for the purpose of illustrating usage. It
 is RECOMMENDED that these values be valid against the associated
 schema.

 Implementations MAY use the value(s) of "default", if present, as an
 additional example. If "examples" is absent, "default" MAY still be
 used in this manner.

11. Security Considerations

 JSON Schema validation defines a vocabulary for JSON Schema core and
 concerns all the security considerations listed there.

 JSON Schema validation allows the use of Regular Expressions, which
 have numerous different (often incompatible) implementations. Some
 implementations allow the embedding of arbitrary code, which is
 outside the scope of JSON Schema and MUST NOT be permitted. Regular
 expressions can often also be crafted to be extremely expensive to
 compute (with so-called "catastrophic backtracking"), resulting in a
 denial-of-service attack.

 Implementations that support validating or otherwise evaluating
 instance string data based on "contentEncoding" and/or
 "contentMediaType" are at risk of evaluating data in an unsafe way

Wright, et al. Expires May 23, 2018 [Page 24]

Internet-Draft JSON Schema Validation November 2017

 based on misleading information. Applications can mitigate this risk
 by only performing such processing when a relationship between the
 schema and instance is established (e.g., they share the same
 authority).

 Processing a media type or encoding is subject to the security
 considerations of that media type or encoding. For example, the
 security considerations of RFC 4329 Scripting Media Types [RFC4329]
 apply when processing JavaScript or ECMAScript encoded within a JSON
 string.

12. References

12.1. Normative References

 [ecma262] "ECMA 262 specification", <http://www.ecma-
international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

 [json-schema]
 Wright, A. and H. Andrews, "JSON Schema: A Media Type for
 Describing JSON Documents", draft-handrews-json-schema-00
 (work in progress), November 2017.

 [relative-json-pointer]
 Luff, G. and H. Andrews, "Relative JSON Pointers", draft-

handrews-relative-json-pointer-00 (work in progress),
 November 2017.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc4329
https://datatracker.ietf.org/doc/html/rfc4329
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-00
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-00
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-00
https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc2045
https://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Wright, et al. Expires May 23, 2018 [Page 25]

Internet-Draft JSON Schema Validation November 2017

 [RFC2673] Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, DOI 10.17487/RFC2673, August 1999,

 <https://www.rfc-editor.org/info/rfc2673>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <https://www.rfc-editor.org/info/rfc3987>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC6531] Yao, J. and W. Mao, "SMTP Extension for Internationalized
 Email", RFC 6531, DOI 10.17487/RFC6531, February 2012,
 <https://www.rfc-editor.org/info/rfc6531>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

https://datatracker.ietf.org/doc/html/rfc2673
https://www.rfc-editor.org/info/rfc2673
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5890
https://www.rfc-editor.org/info/rfc5890
https://datatracker.ietf.org/doc/html/rfc5891
https://www.rfc-editor.org/info/rfc5891
https://datatracker.ietf.org/doc/html/rfc6531
https://www.rfc-editor.org/info/rfc6531
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901

Wright, et al. Expires May 23, 2018 [Page 26]

Internet-Draft JSON Schema Validation November 2017

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

12.2. Informative References

 [RFC4329] Hoehrmann, B., "Scripting Media Types", RFC 4329,
 DOI 10.17487/RFC4329, April 2006,
 <https://www.rfc-editor.org/info/rfc4329>.

Wright, et al. Expires May 23, 2018 [Page 27]

https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc4329
https://www.rfc-editor.org/info/rfc4329

Internet-Draft JSON Schema Validation November 2017

Appendix A. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave
 Finlay, and Denis Laxalde for their submissions and patches to the
 document.

Appendix B. ChangeLog

 [[CREF3: This section to be removed before leaving Internet-Draft
 status.]]

draft-handrews-json-schema-validation-00

 * Added "if"/"then"/"else"

 * Classify keywords as assertions or annotations per the core
 spec

 * Warn of possibly removing "dependencies" in the future

 * Grouped validation keywords into sub-sections for readability

 * Moved "readOnly" from hyper-schema to validation meta-data

 * Added "writeOnly"

 * Added string-encoded media section, with former hyper-schema
 "media" keywords

 * Restored "regex" format (removal was unintentional)

 * Added "date" and "time" formats, and reserved additional RFC
3339 format names

 * I18N formats: "iri", "iri-reference", "idn-hostname", "idn-
 email"

 * Clarify that "json-pointer" format means string encoding, not
 URI fragment

 * Fixed typo that inverted the meaning of "minimum" and
 "exclusiveMinimum"

 * Move format syntax references into Normative References

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-00
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Wright, et al. Expires May 23, 2018 [Page 28]

Internet-Draft JSON Schema Validation November 2017

 * JSON is a normative requirement

draft-wright-json-schema-validation-01

 * Standardized on hyphenated format names ("uriref" becomes "uri-
 ref")

 * Add the formats "uri-template" and "json-pointer"

 * Changed "exclusiveMaximum"/"exclusiveMinimum" from boolean
 modifiers of "maximum"/"minimum" to independent numeric fields.

 * Split the additionalItems/items into two sections

 * Reworked properties/patternProperties/additionalProperties
 definition

 * Added "examples" keyword

 * Added "contains" keyword

 * Allow empty "required" and "dependencies" arrays

 * Fixed "type" reference to primitive types

 * Added "const" keyword

 * Added "propertyNames" keyword

draft-wright-json-schema-validation-00

 * Added additional security considerations

 * Removed reference to "latest version" meta-schema, use numbered
 version instead

 * Rephrased many keyword definitions for brevity

 * Added "uriref" format that also allows relative URI references

draft-fge-json-schema-validation-01

 * Initial draft.

 * Salvaged from draft v3.

 * Redefine the "required" keyword.

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-01

Wright, et al. Expires May 23, 2018 [Page 29]

Internet-Draft JSON Schema Validation November 2017

 * Remove "extends", "disallow"

 * Add "anyOf", "allOf", "oneOf", "not", "definitions",
 "minProperties", "maxProperties".

 * "dependencies" member values can no longer be single strings;
 at least one element is required in a property dependency
 array.

 * Rename "divisibleBy" to "multipleOf".

 * "type" arrays can no longer have schemas; remove "any" as a
 possible value.

 * Rework the "format" section; make support optional.

 * "format": remove attributes "phone", "style", "color"; rename
 "ip-address" to "ipv4"; add references for all attributes.

 * Provide algorithms to calculate schema(s) for array/object
 instances.

 * Add interoperability considerations.

Authors' Addresses

 Austin Wright (editor)

 EMail: aaa@bzfx.net

 Henry Andrews (editor)
 Cloudflare, Inc.
 San Francisco, CA
 USA

 EMail: henry@cloudflare.com

 Geraint Luff
 Cambridge
 UK

 EMail: luffgd@gmail.com

Wright, et al. Expires May 23, 2018 [Page 30]

